Diffraction Tomography I: The Fourier Diffraction Theorem

Kerkil Choi
Fitzpatrick Center for Photonics
Duke University

21-Oct-09
Diffraction tomography I

- The Fourier diffraction theorem: Green’s function decomposition
- The Fourier diffraction theorem: The Fourier transform approach
- A limit of the Fourier diffraction theorem
- The Fourier space coverage discussion (synthetic aperture)

We will discuss interpolation methods and filtered backpropagation methods in the next lecture.
What we are trying to understand...

Diffraction tomography vs. Projection tomography

- **Detector plane** $u_p(x)$
- **Object o(x,y)**
- **Undiffracted field** (Fourier projection slice theorem)
- **Illumination**

- **Detector plane** $u_s(x)$
- **Object o(x,y)**
- **Diffracted field**
- **Plane wave**
Tomography with diffracted or scattered fields

Relationship between the object $o(r)$ and diffracted field: $(r = (x, y))$

- X-ray projection (u_p): undiffracted field (projection)
 \[u_p(x) = \int \chi o(r) dy \]

- EM, acoustic (u_d): diffracted field
 \[u(r) = u_0(r) + u_d(r) \]
 \[(\nabla^2 + k_0^2)u_d(r) = -o(r)u(r): \text{scalar Helmholtz equation} \]
 \[o(r) = k_0^2[n^2(r) - 1]: \text{object scattering density} \]
 \[u_d(r) = \int g(r|r') o(r') u(r') dr', \]
 \[g(r|r') = \frac{\exp(jk_0|r - r'|)}{4\pi|r - r'|}: \text{green's function} \]
The first Born approximation

\[u(r) = u_0(r) + u_d(r) \]

Assumption: \(u_d \ll u_0 \): weakly scattering object

The first Born approximation

\[
u_d(x) = \int g(r - r')o(r')u_0(r')dr' + \int g(r - r')o(r')u_d(r')dr' \approx \int g(r - r')o(r')u_0(r')dr'
\]
The Fourier diffraction theorem

u_0: incident plane wave
u_d: diffracted (or scattered) field

Theorem: When an object o is illuminated by a plane wave u_0, the Fourier transform of the diffracted field produces the Fourier transform O of the object along a semicircular arc in 2-D and along the semispherical surface in 3-D in the spatial frequency domain.

\[F\{u_d(y)\} \]
The Fourier diffraction theorem proof: plane wave decomposition of Green’s function

Plane wave decomposition of Green’s function

\[g(r|r') = g(r - r') = \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \frac{1}{\beta} \exp \{ j[\alpha(x - x') + \beta|y - y'|] \} \]

\[u_d(r) = \int dr' o(r) u_0(r) \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \frac{1}{\beta} \exp \{ j[\alpha(x - x') + \beta|y - y'|] \} \]

\[u_0(r) = \exp(js_0 \cdot r) \]

\[s_0 = (0, k_0) \]

\[l_0 > y' \]
\alpha^2 + \beta^2 = k_0^2

\[u_d(x, y = l_0) = \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \int d\mathbf{r}' \frac{o(\mathbf{r}')}{\beta} \exp \left\{ j[\alpha(x - x') + \beta(l_0 - y')] \right\} \exp \left\{ jk_0y' \right\}\]

\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \int d\mathbf{r}' \frac{o(\mathbf{r}')}{\beta} \exp \left\{ -j[\alpha x' + (\beta - k_0)y'] \right\} \exp \left\{ -j(\alpha x + \beta l_0) \right\}\]

\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \frac{\exp \left\{ -j(\alpha x + \beta l_0) \right\}}{\beta} \int d\mathbf{r}' o(\mathbf{r}') \exp \left\{ -j[\alpha x' + (\beta - k_0)y'] \right\}\]

\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \frac{\exp \left\{ -j(\alpha x + \beta l_0) \right\}}{\beta} O(\alpha, \beta - k_0)\]
\[\alpha^2 + \beta^2 = k_0^2 \]

\[F\{u_d(x, y = l_0)\} = \int_{-\infty}^{\infty} dx u_d(x, y = l_0) \exp(-j\alpha x) \]

\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} dx \int d\alpha' \frac{\exp\{-j(\alpha' x + \beta l_0)\}}{\beta} O(\alpha', \beta - k_0) \exp(-j\alpha x) \]

\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} dx \int d\alpha' \exp\{j(\alpha' - \alpha)x\} \frac{\exp(j\beta l_0)}{\beta} O(\alpha', \beta - k_0) \]

\[= \frac{j}{4\pi} \int d\alpha' 2\pi \delta(\alpha' - \alpha) \frac{\exp(j\beta l_0)}{\beta} O(\alpha', \beta - k_0) \]

\[= \frac{j}{2} \frac{\exp(j\beta l_0)}{\beta} O(\alpha, \beta - k_0) = \frac{j}{2} \frac{\exp(jl_0 \sqrt{k_0^2 - \alpha^2})}{\sqrt{k_0^2 - \alpha^2}} O(\alpha, \sqrt{k_0^2 - \alpha^2} - k_0) \]
The Fourier diffraction theorem proof: plane wave decomposition of Green’s function (Cont’d)

\[u_0(\mathbf{r}) = \exp(j \mathbf{s}_0 \cdot \mathbf{r}) \]
\[\mathbf{s}_0 = (k_0 \cos \theta, k_0 \sin \theta) \]
\[l_0 > y' \]

\[u_d(x, y = l_0) \]
\[= \frac{j}{4\pi} \int_{-\infty}^{\infty} d\alpha \exp \left\{ -j(\alpha x + \beta l_0) \right\} \frac{O(\alpha - k_0 \cos \theta, \beta - k_0 \sin \theta)}{\beta} \]

\[U_d(\alpha) = \mathcal{F} \{ u_d(x, y = l_0) \} \]
\[= \frac{j \exp(j l_0 \sqrt{k_0^2 - \alpha^2})}{2 \sqrt{k_0^2 - \alpha^2}} O(\alpha - k_0 \cos \theta, \sqrt{k_0^2 - \alpha^2} - k_0 \sin \theta) \]
The Fourier diffraction theorem proof: plane wave decomposition of Green’s function (Cont’d)
The Fourier diffraction theorem: The Fourier transform approach

\[u_d(x) = \int g(r - r') o(r') u_0(r') dr' \]

\[U_d(\alpha, \beta) = G(\alpha, \beta) \left[F\{ o(r') u_0(r') \} \right] \]
\[= G(\alpha, \beta) \left[O(\alpha, \beta) \ast U_0(\alpha, \beta) \right] \]

- \(G(\alpha, \beta) \): Fourier transform of the scalar Helmholtz equation

\[(\nabla^2 + k_0^2) g(r|r') = -\delta(r - r') \]
\[(-\omega^2 + k_0^2) G(\omega|r') = -\exp(-j\omega \cdot r') \]
\[\omega = (\alpha, \beta), \ k_0^2 = \alpha^2 + \beta^2 \]
The Fourier diffraction theorem: The Fourier transform approach (Cont’d)

- $U_0(\alpha, \beta)$: Fourier transform of the incident plane wave

$$U_0(\omega) = U_0(\alpha, \beta) = \mathcal{F}\{\exp(js_0 \cdot r')\} = 2\pi \delta(\omega - s_0)$$

$$O(\alpha, \beta) \ast U_0(\alpha, \beta) = 2\pi O(\alpha - k_0 \cos \theta, \beta - k_0 \sin \theta)$$

$$G(\alpha, \beta | r' = 0) = \frac{-1}{k_0^2 - \alpha^2 - \beta^2}$$

Green’s function Fourier transform has two poles at $k_0 = \pm \sqrt{\alpha^2 + \beta^2}$.

$$U_d(\alpha, \beta) = \frac{2\pi O(\alpha - k_0 \cos \theta, \beta - k_0 \sin \theta)}{\alpha^2 + \beta^2 - k_0^2}$$
The Fourier diffraction theorem: The Fourier transform approach (Cont’d)

Diffracted field along the detector:

\[u_d(x, y = l_0) = \frac{1}{4\pi^2} \iint d\alpha d\beta U_d(\alpha, \beta) \exp\{j(\alpha x + \beta l_0)\} \]

\[= \frac{1}{4\pi^2} \iint d\alpha d\beta \frac{O(\alpha - k_0 \cos \theta, \beta - k_0 \sin \theta)}{\alpha^2 + \beta^2 - k_0^2} \exp\{j(\alpha x + \beta l_0)\} \]

Two poles:

\[\beta = \pm \sqrt{k_0^2 - \alpha^2} \]

Contour integration with residues at the two poles:

\[u_d(x, l_0) = \frac{1}{2\pi} \int d\alpha \Gamma_1(\alpha; l_0) \exp(j\alpha x) + \frac{1}{2\pi} \int d\alpha \Gamma_2(\alpha; l_0) \exp(j\alpha x) \]
The Fourier diffraction theorem: The Fourier transform approach (Cont’d)

\[
\Gamma_1(\alpha, l_0) = \frac{jO(\alpha - k_0 \cos \theta, \sqrt{k_0^2 - \alpha^2 - k_0 \sin \theta})}{2 \sqrt{k_0^2 - \alpha^2}} \exp(jl_0\sqrt{k_0^2 - \alpha^2})
\]

\[
\Gamma_2(\alpha, l_0) = \frac{-jO(\alpha - k_0 \cos \theta, -\sqrt{k_0^2 - \alpha^2 - k_0 \sin \theta})}{2 \sqrt{k_0^2 - \alpha^2}} \exp(-jl_0\sqrt{k_0^2 - \alpha^2})
\]
The Fourier diffraction theorem: The Fourier transform approach (Cont’d)

\[u_d(x, l_0) = \frac{1}{2\pi} \int d\alpha \Gamma_1(\alpha; l_0) \exp(j\alpha x) \quad \text{transmission geometry} \]

\[u_d(x, l_0) = \frac{1}{2\pi} \int d\alpha \Gamma_2(\alpha; l_0) \exp(j\alpha x) \quad \text{reflection geometry} \]
\(\lambda_0 \rightarrow 0 \), equivalently, \(k_0 = \frac{2\pi}{\lambda_0} \rightarrow \infty \)

The radius of the \(k \)-circle is determined by the wavelength \(\lambda_0 \).

\[k_2 > k_1 \text{ (X-ray vs. visible ray)} \]

- X-ray: radius = \(5 \times 10^8 \) rads/meter
 - resolution < 1000 rads/meter
Data collection: synthetic aperture discussion

Frequency coverage discussion

- Multispectral illumination
- Multiangle illumination
- Vertical seismic profiling (VSP): Figs. 6.11 and 6.12
- Synthetic aperture approach: Figs. 6.9 and 6.10
Filter and point spread function

\[
\text{ring}(\alpha, \beta) \longleftrightarrow \pi J_0(\pi \sqrt{\alpha^2 + \beta^2})
\]

\[
\text{ring}(\alpha, \beta) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \text{rect} \left[\frac{2 \sqrt{\alpha^2 + \beta^2} - 1}{2\epsilon} \right]
\]

\[
H(\alpha, \beta) = \text{ring}(\alpha, \beta) \text{rect} \left(\frac{\alpha}{a}, \frac{\beta}{b} \right)
\]

\[
h(x, y) = \pi J_0(\pi \sqrt{x^2 + y^2}) * \text{sinc}(ax, by)
\]
Point spread function
An estimate of resolution from a linear filtering perspective

\[
\begin{align*}
\Delta_x &= \frac{2\pi}{A} = \frac{\lambda}{2NA} \\
\Delta_y &= \frac{2\pi}{B} = \frac{2\lambda}{NA^2}
\end{align*}
\]
Simulations: transmission vs. reflection
Simulations: transmission vs. reflection